新疆都市报 > 科技 > 智能 >

传统风控与智能风控

发布时间:2020-04-27 09:44来源: 网络整理

金融机构在风控过程中通常采用的是评分卡模型和规则引擎等“强特征”进行风险评分,而智能风控根据履约记录、社交行为、行为偏好、身份信息和设备安全等“弱特征”进行用户风险评估。两种风控方式从操作到场景都呈现出了明显的区别化效应,进入移动互联网时代后,智能风控的优势愈加凸显,成为传统风控的有效补充。 智能风控重大数据、算法和计算能力,强调数据间的相关关系,其在风控环节中的应用主要有以下三点:计算机视觉和生物特征的识别,即利用人脸识别、指纹识别等活体识别来确认用户身份;反欺诈识别,智能风控利用多维度、多特征的数据预测用户的欺诈意愿和倾向;正常用户的还款意愿和能力的评估判断。对于交易、社交、居住环境的稳定性等用户行为数据,运用神经网络、决策树、梯度算法、随机森林等先进的机器学习算法进行加工处理。 就目前的应用情况而言,智能风控模型已具备较好的用户区分度,可以在评估结果中清晰地区分优质和劣质客户,经过技术人员的不断优化迭代,识别精度和判断速度均呈螺旋式上升态势。但是,目前整个行业都面临数据孤岛和信息不透明的问题,行业共债情况得不到共享,部分信息的准确度、覆盖度、权威性和及时性存在明显不足,智能风控技术的提升空间依旧很大。 (整理:王天宇)

  金融机构在风控过程中通常采用的是评分卡模型和规则引擎等“强特征”进行风险评分,而智能风控根据履约记录、社交行为、行为偏好、身份信息和设备安全等“弱特征”进行用户风险评估。两种风控方式从操作到场景都呈现出了明显的区别化效应,进入移动互联网时代后,智能风控的优势愈加凸显,成为传统风控的有效补充。

  智能风控重大数据、算法和计算能力,强调数据间的相关关系,其在风控环节中的应用主要有以下三点:计算机视觉和生物特征的识别,即利用人脸识别、指纹识别等活体识别来确认用户身份;反欺诈识别,智能风控利用多维度、多特征的数据预测用户的欺诈意愿和倾向;正常用户的还款意愿和能力的评估判断。对于交易、社交、居住环境的稳定性等用户行为数据,运用神经网络、决策树、梯度算法、随机森林等先进的机器学习算法进行加工处理。

  就目前的应用情况而言,智能风控模型已具备较好的用户区分度,可以在评估结果中清晰地区分优质和劣质客户,经过技术人员的不断优化迭代,识别精度和判断速度均呈螺旋式上升态势。但是,目前整个行业都面临数据孤岛和信息不透明的问题,行业共债情况得不到共享,部分信息的准确度、覆盖度、权威性和及时性存在明显不足,智能风控技术的提升空间依旧很大。 (整理:王天宇)